A New F131V Mutation in Chlamydomonas Phytoene Desaturase Locates a Cluster of Norflurazon Resistance Mutations near the FAD-Binding Site in 3D Protein Models
نویسندگان
چکیده
The green alga Chlamydomonas reinhardtii provides a tractable genetic model to study herbicide mode of action using forward genetics. The herbicide norflurazon inhibits phytoene desaturase, which is required for carotenoid synthesis. Locating amino acid substitutions in mutant phytoene desaturases conferring norflurazon resistance provides a genetic approach to map the herbicide binding site. We isolated a UV-induced mutant able to grow in very high concentrations of norflurazon (150 µM). The phytoene desaturase gene in the mutant strain contained the first resistance mutation to be localised to the dinucleotide-binding Rossmann-likedomain. A highly conserved phenylalanine amino acid at position 131 of the 564 amino acid precursor protein was changed to a valine in the mutant protein. F131, and two other amino acids whose substitution confers norflurazon resistance in homologous phytoene desaturase proteins, map to distant regions in the primary sequence of the C. reinhardtii protein (V472, L505) but in tertiary models these residues cluster together to a region close to the predicted FAD binding site. The mutant gene allowed direct 5 µM norflurazon based selection of transformants, which were tolerant to other bleaching herbicides including fluridone, flurtamone, and diflufenican but were more sensitive to beflubutamid than wild type cells. Norflurazon resistance and beflubutamid sensitivity allow either positive or negative selection against transformants expressing the mutant phytoene desaturase gene.
منابع مشابه
Bansformation of tobacco with a mutated cyanobacterial phytoene desaturase gene confers resistance to bleaching herbicides.
Carotenoids are constituents of the photosynthetic apparatus and essential for plant survival because of their involvement in protection of chlorophylls against photooxidation. Certain classes of herbicides are interfering with carotenoid biosynthesis leading to pigment destruction and a bleached plant phenotype. One important target site for bleaching herbicides is the enzyme phytoene desatura...
متن کاملMolecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis.
Mutant strains of the cyanobacterium Synechococcus sp. PCC 7942 that are resistant to the herbicides norflurazon and fluridone were analyzed. These herbicides inhibit phytoene desaturase, a key enzyme in the carotenoid biosynthetic pathway. In three mutants the phenotype was related to specific point mutations in pds, the gene encoding phytoene desaturase. Since the resistance was manifested in...
متن کاملPhytoene Desaturase from Oryza sativa: Oligomeric Assembly, Membrane Association and Preliminary 3D-Analysis
Recombinant phytoene desaturase (PDS-His6) from rice was purified to near-homogeneity and shown to be enzymatically active in a biphasic, liposome-based assay system. The protein contains FAD as the sole protein-bound redox-cofactor. Benzoquinones, not replaceable by molecular oxygen, serve as a final electron acceptor defining PDS as a 15-cis-phytoene (donor):plastoquinone oxidoreductase. The ...
متن کاملEnzyme-Kinetic Studies on the Interaction of Norflurazon with Phytoene Desaturase
Bleaching herbicides inhibit carotene biosynthesis in photosynthetic organisms. The interaction of norflurazon [4-chloro-5-methylamino-2-(3-trifluoromethylphenyl)-pyridazin-3(2H)one] with its target enzyme phytoene desaturase, has been characterized by enzyme-kinetic studies. A Lineweaver-Burk plot showed a non-competitive manner for norflurazon inhibition. Binding of norflurazon to phytoene de...
متن کاملPlant-type phytoene desaturase: Functional evaluation of structural implications
Phytoene desaturase (PDS) is an essential plant carotenoid biosynthetic enzyme and a prominent target of certain inhibitors, such as norflurazon, acting as bleaching herbicides. PDS catalyzes the introduction of two double bonds into 15-cis-phytoene, yielding 9,15,9'-tri-cis-ζ-carotene via the intermediate 9,15-di-cis-phytofluene. We present the necessary data to scrutinize functional implicati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014